

Here is a link to videos to help with understanding all of this

https://www.thenewboston.com/videos.php?cat=31&video=17966

PRIMITIVE DATA TYPES (TO DEFINE A VARIABLE)
@ int — data type for integers (-1, 2, 33)
@ double- data type for decimals (1.0, 1.5, -2.59)
@ String — data type for text (“yolo”, ”a”)
@ char - (no one uses this) data type for a single letter (‘a’)

@ boolean - data type for “yes” or “no” (true, false)

OPERATORS (DOING STUFF WITH VARIABLES)
Simple operators

@ =:FEquals (i=2)

@ +:Add(2+2)

@ - :Subtract (2-2)

@ *: Multiply (2 * 2)

@ /:divide (2/2)

@® % :Modulus (The remainder. EX: the modulus of 4/2 is 0 and 3/2 is 1)

@ [] = array- a list starting at 0

~1st term(0) is called the parent~

The Unary Operators (This will be important when doing real world math with
programming)

@ +X : positive-ify number

@ -X : negative-ify number

@ X++:add 1toX

@ X--: subtract 1 from X

@® !X : Meaning not, used with a boolean (false == Itrue, true == !false)

ADVANCED MATH OPERATORS
CHANGING VALUE OF A VARIABLE THE LAZY WAY: X <math operator>= #

@ X+=2:add2toX (sameas X=X +2)
@ X -=2:subtract 2 from X

@ X *=2 : multiply X by 2

@ X /=2 :divide X by 2

https://www.thenewboston.com/videos.php?cat=31&video=17966

~Equality and Relational Operators

==: equal to (not the same as “ = “) (EX: x ==y) (Is used to test whether 2
primitive variables are equal to each other)

@® !=: Not equal to (2 != 3, Christmas != thanksGiving)

@ > : greater than

@ <:less than

@ >=: greater than or equal to (don’t be a silly willy by doing ”=>")

@ <=:less than or equal to

~Conditional Operators (True and false stuff)

@® &&:and (EX: Apple && Orange, apple and orange are true. Both must be
true to work)

® || : or (EX: Isnowing || raining, itis not snowing or is raining, only one of
them needs to be true to work

EXPRESSIONS, STATEMENTS,

Display HelloWorld in console:

System.out.printIn(“HelloWorld”);

<object>.<method>(<parameters>)

@ System.out is the name of the object that is used for output.

@ println is the method used to output text at the very bottom of the
console window.

@ “HelloWorld” is the parameter being given to printin. println only has one
parameter: the String of text to be displayed.

@ Semicolons ; mark the end of each statement or sentence in a program

@ Object oriented programs accomplish tasks by sending messages to
objects, a System.out object responds to a println message by printing a
string of characters in the terminal window.

@ the period (.) between object and the method is called a method selector.
the period between System and out is not a method selector, it is part of
the obj

Import Statements

~Importing a utility and initializing it.

1. Create an import statement above “public class”. The General form of an
import statement consist of the overall name of the package, the name of
a subsection within the package and the name of a particular class in the
subsection._import is the command to create an import statement
Ex. import java.util.Scanner; (Java is the package, util is the subsection, Scanner
is the class),
mport is the command to create an import statement

2. initiate the object from the imported class.

SomeClass someObject = new SomeClass(some parameter);

Ex. Scanner reader = new Scanner(System.in); (This initiates a scanner that
is called “reader”)
3. Create a method
Some utilities require and 1/0O (Input, output) data such as a Scanner. For
example, A programmer creates a piece of code that asks the user to input an
integer for a variable using a scanner utility. it would look something like this
inta=0;
System.out.printIn(“Please specify an input”);
a = reader.nextlInt(); (nextInt() returns the first integer in the input line, basically
you use this to assign a variable a value) (BEWARE USE THE CORRECT METHOD
FOR THE CORRECT VARIABLE, nextDouble() does not work with an integer
variable!!!)

Logic, Booleans, and Loops

@ If and else statements-An if and else statement is a simple conditional
expression.

@ if (a > b) System.out.printIn(“a ackbar”);

@ clse if (b > 3) System.out.println(“a <= b, b > 3”);

@ clse if (b >= 2) System.out.printin(“a <= b, b >= 2”);

@ else System.out.printin(“a<b, b < 2”);

If(condition){

statement; //Execute these statements if condition is true

}
else{

statement; //Execute this statement if the condition if false
}

@ While-A while contains a condition that creates certain parameter such as
X < 20, and under that condition are statements that usually define the a
new condition for the while statement

EX.
intx=0;
while (x < 20){ // until x is greater than 20, the code will keep looping

x++; // increment x (add 1), this will become the new x, and go back to the
condition in the while statement.

}

The result will be that x is equal to 20, because eventually the condition in the
while statement will become false, and will terminate.

@ Loops-A loop is a code segment that repeats itself continuously as long as
a certain condition remains true, once the condition is false, the repetition
will stop.
Ex-

int counter=0

while(counter < 10) {
system.out.printin(counter);
counter ++;

}

Result

O 00 N O UL p W IN - O

Using Multiple Classes
Template:
@® <name>Object = new <classname>(<parameters if any>);

@ <name>0bject.<method>(<parameters>);

@ name.Object = name that you will be using to call forth the class
@ classname= the name of the class you will be calling
@® method= the method from the class you want to use, remember to

o n

separate the <name>.Object from the method using a “.
Ex. tunaObject = new tuna(); ¢ Specify your method
tunaObject.simplemessage(); ¢ use your method

MULTIPLE CLASSES

CLASSES SERVERS AND CLIENTS

CLASS: a class is a software package or template that describes the
characteristics of similar objects

CLIENT THE BOSS:A computer computation object that receives a service
from another computational object

SERVER WORKER:A computational object that provides a service to
another computational object

OBIJECT:A collection of data and operations in which the data can be
accessed and modified only by means of the operations

CONSTRUCTOR: A method that is run when an object is instantiated
usually to initialize that object variable

METHOD: A chunk of code that can be treated as a unit and invoked by
name

METHOD HEADING: The portion of a method Implementation containing
the function’s name, parameter declarations and return type

PARAMETER: A variable or expression contained in a method and call and
passed to another method

STRING METHOD : Swbat: use the string method

CHARAT(ANINDEX): returns char Example: myStr.charAt(4); returns the
character at the position anindex. Remember that the first character is at
position 0. An execution is thrown (i.e an error is generated) if anindex is out of
range (i.e. does not indicate a valid position with myStr)

COMPARETO(ASTRING): returns int Example | = myStr.compareTi(“abc”);
compares two strings alphabetically. Return 0 if myStr equals aString a value

less than O if myStr string is alphabetically less than aString and a value greater
than 0 if myStr string is alphabetically greater than aString
- EQUALS(ASTRING): Returns boolean ExAmple:boolean = myStr.equals(“abc”);
Returns true if myStr equals aString; else returns false. Because of
implementation peculiarities in java, never test for equality like this: myStr ==
astring.
- EQUALSIGNORECASE(ASTRING): Returns Boolean Similar to equals but
ignores but ignores case ignores case during the comparison
- INDEXOF(ACHARACTER): Returns int Example: | = myStr.indexOf(‘x’); Returns
the index within myStr of the first occurrence of a Character or -1 if aCharactrer
is absent
-INDEXOF(ACHARACTE, BEGININDEX): returns int Example: | = myStr.indexOf(‘Z’,
6); Similar to the preceding method except the search starts at position
beginindex rather than at the beginning of myStr. An exception is thrown (i.e.
an error is generated) if beginning
- INDEXODF(ASUBSTRING): Returns int Example: | = myStr.indexOF(“abc”);
Returns the index within myStr of the first occurrence of aSubString or -1 if
aSubString is absent

*LENGTH: Returns int Example: | = myStr.length(); Returns the length of
myStr.

REPLACE(OLDCHAR, NEWCHAR): Returns string Example: Str =
myStr.replace(‘Z’, ‘b’); Returns a new string resulting from replacing occuerences
of oldchar in myStr with newChar. myStr is not.

-*SUBSTRING(BEGININDEX): returns string Example str = myStr.sugbString(6);
Returns new string that is a substring of myStr. The substring begins at location
beginindex and extends to the end of myStr an exception is thrown(i.e, ab error
is generated beginindex is out of range(i.e, does not indicate a valid position
within myStr)

- *SUBSTRING(BEGININDEX, ENDINDEX): Returns string Example: str =
myStr.subString(4,9); Similar to the preceding method except the substring
extends ton location endindex -1 rather than to the end of myStr

TOLOWERCASE():Returns string Example str = myStr.LowerCase(); Str is
the same as myStr except that all letters have been converted to lowercase
myStr is not changed

TOUPPERCASE():Returns string Example str = myStr.LowerCase(); Str is the
same as myStr except that all letters have been converted to uppercase myStr is
not changed

TRIM(): Returns string Example str = myStr.trimm(); Str is the same as
myStr except the leading and trailing spaces if any are absent myStr is not

changed

Sensor Code

Gyro:

void initGyro ()

Initialize the gyro.

Gyro (int channel)

Gyro constructor using the channel number.

Gyro (Analoglnput channel)

Gyro constructor with a precreated analog channel object.

void reset()

Reset the gyro.

doube getAngle ()

Return the actual angle in degrees that the robot is currently facing.

void setSensitivity (double voltsPerDegreePerSecond)

Set the gyro sensitivity.

Joystick:

doube getY (Hand hand)

Get the Y value of the joystick.

int getButtonCount ()

For the current joystick, return the number of buttons.

boolen getButton (ButtonType button)

Get buttons based on an enumerated type.

doube getDirectionDegrees ()

Get the direction of the vector formed by the joystick and its origin in

degrees.

int getAxisChannel (AxisType axis)

Get the channel currently associated with the specified axis.

void setAxisChannel (AxisType axis, int channel)

Set the channel associated with a specified axis.

void setOutput (int outputNumber, boolean value)

Set a single HID output value for the joystick

Compressor:

void

void

Talons:

void

Compressor (int pcmld)

Create an instance of the Compressor.

Compressor

Create an instance of the Compressor Makes a new instance of the

compressor using the default PCM ID (0).

start ()

Start the compressor running in closed loop control mode Use the method in

cases where you would like to manually stop and start the compressor for

applications such as conserving battery or making sure that the compressor

motor doesn't start during critical operations.

stop ()

Stop the compressor from running in closed loop control mode.

Talon (final int channel)

Constructor for a Talon (original or Talon SR)

set (double speed, byte syncGroup)

Set the PWM value.

10

http://first.wpi.edu/FRC/roborio/release/docs/java/classedu_1_1wpi_1_1first_1_1wpilibj_1_1Compressor.html#a0ab15a6419e61b1e8b6c7c4e0b6760e0
http://first.wpi.edu/FRC/roborio/release/docs/java/classedu_1_1wpi_1_1first_1_1wpilibj_1_1Talon.html#af3105a4d47f1c1b55f77a650435f60db

Solenoids:

void

Solenoid (final int channel)

Constructor using the default PCM ID (0)

Solenoid (final int moduleNumber, final int channel)

Constructor.

set (boolean on)

Set the value of a solenoid

Victors:

Victor (final int channel)
Constructor.

void set (double speed, byte syncGroup)
Set the PWM value.

void set (double speed)
Set the PWM value

void stopMotor ()

11

http://first.wpi.edu/FRC/roborio/release/docs/java/classedu_1_1wpi_1_1first_1_1wpilibj_1_1Solenoid.html#ae8fbc88ab175e1a67afea530bb25fdac
http://first.wpi.edu/FRC/roborio/release/docs/java/classedu_1_1wpi_1_1first_1_1wpilibj_1_1Victor.html#a52ff87ed230fd8867dbbfcf1fb4a80fa
http://first.wpi.edu/FRC/roborio/release/docs/java/classedu_1_1wpi_1_1first_1_1wpilibj_1_1Victor.html#a34386859b80272ac9bc81e98e14308af

Stop the motor associated with this PWM object.

CameraServer:

void setlmage (Image image)

Manually change the image that is served by the MJPEG stream.

void startAutomaticCapture ()

Start automatically capturing images to send to the dashboard.

void startAutomaticCapture (String cameraName)

Start automatically capturing images to send to the dashboard

12

http://first.wpi.edu/FRC/roborio/release/docs/java/classedu_1_1wpi_1_1first_1_1wpilibj_1_1CameraServer.html#a2d677dbda960f18510a7ab56d1245a3b
http://first.wpi.edu/FRC/roborio/release/docs/java/classedu_1_1wpi_1_1first_1_1wpilibj_1_1CameraServer.html#a1411ea98f35d26f89d51fcc7eb5909f2

Sensor code for Autonomous (This section will be updated according to the game)

Variables:
@ Jagl, Jag2, Jag3, Jags = wheels

Codes:
VD.set
@ val.set(#); <= “#” can be set from -1 to 1 like percentages -100% to 100%
@ Jagl.set(#); = “#” same as tabove?®
@ Timer.delay(#);= “#” set in seconds. this is time delay before continuing to next codes
@ Jag#.StopMotor(); = stops motor

llll llll
“i-{ Reminders -

Everything will keep running as long as it is set on true (except Jaguars where you use
Jag#.StopMotor();)

DO NOT MAKE ROBOT USE CONTRADICTING CODES SIMULTANEOUSLY

Timer delay lets the codes above it run before starting the codes bel

13

Autonomous Code

~Getingstrated.java code™

package org.usfirst.frc.team564.robot;

import edu.wpi.first.wpilibj.IterativeRobot;

import edu.wpi.first.wpilibj.Joystick;

import edu.wpi.first.wpilibj.RobotDrive;

import edu.wpi.first.wpilibj.livewindow.LiveWindow;

/**
* The VM is configured to automatically run this class, and to call the
* functions corresponding to each mode, as described in the IterativeRobot
* documentation. If you change the name of this class or the package after
* creating this project, you must also update the manifest file in the resource
* directory.
*/
public class Robot extends IterativeRobot {

RobotDrive myRobot;

Joystick stick;

int autoLoopCounter;

/**
* This function is run when the robot is first started up and should be
* used for any initialization code.
*
/
public void robotlnit() {
myRobot = new RobotDrive(0,1);
stick = new Joystick(0);

/**
* This function is run once each time the robot enters autonomous mode
*
/
public void autonomousinit() {
autoLoopCounter = 0;

14

/**
* This function is called periodically during autonomous
*/
public void autonomousPeriodic() {
if(autoLoopCounter < 100) //Check if we've completed 100 loops (approximately 2

seconds)
{
myRobot.drive(-0.5, 0.0); // drive forwards half speed
autoLoopCounter++;
}else {
myRobot.drive(0.0, 0.0); // stop robot
}
}
/**

* This function is called once each time the robot enters tele-operated mode
*/

public void teleoplnit(){

}

/**
* This function is called periodically during operator control
*/
public void teleopPeriodic() {
myRobot.arcadeDrive(stick);

/**
* This function is called periodically during test mode
*
/
public void testPeriodic() {
LiveWindow.run();

15

~Gyro.Java code”™
package org.usfirst.frc.team564.robot;

import edu.wpi.first.wpilibj. CANTalon;

import edu.wpi.first.wpilibj.AnalogGyro;
import edu.wpi.first.wpilibj.SampleRobot;
import edu.wpi.first.wpilibj.RobotDrive;
import edu.wpi.first.wpilibj.Joystick;

import edu.wpi.first.wpilibj.smartdashboard.*;

/**

* This is a sample program to demonstrate how to use a gyro sensor to make a robot drive

* straight. This program uses a joystick to drive forwards and backwards while the gyro

*is used for direction keeping.

R

* WARNING: While it may look like a good choice to use for your code if you're inexperienced,
* don't. Unless you know what you are doing, complex code will be much more difficult under
* this system. Use IterativeRobot or Command-Based instead if you're new.

*/

public class Robot extends SampleRobot {

final int gyroChannel = 0; //analog input
final int joystickChannel = 0; //usb number in DriverStation

//channels for motors

final int leftMotorChannel = 1;

final int rightMotorChannel = O;
final int leftRearMotorChannel = 3;
final int rightRearMotorChannel = 2;

double angleSetpoint = 0.0;
final double pGain = .006; //propotional turning constant

//gyro calibration constant, may need to be adjusted;

//gyro value of 360 is set to correspond to one full revolution
final double voltsPerDegreePerSecond =.0128;

16

RobotDrive myRobot;
AnalogGyro gyro;
Joystick joystick;

public Robot()
{
//make objects for the drive train, gyro, and joystick
myRobot = new RobotDrive(new CANTalon(leftMotorChannel), new CANTalon(
leftRearMotorChannel), new CANTalon(rightMotorChannel),
new CANTalon(rightRearMotorChannel));
gyro = new AnalogGyro(gyroChannel);
joystick = new Joystick(joystickChannel);

/**
* Runs during autonomous.
*/

public void autonomous() {

/**
* Sets the gyro sensitivity and drives the robot when the joystick is pushed. The
* motor speed is set from the joystick while the RobotDrive turning value is assigned
* from the error between the setpoint and the gyro angle.
*/
public void operatorControl() {
double turningValue;
gyro.setSensitivity(voltsPerDegreePerSecond); //calibrates gyro values to equal degrees
while (isOperatorControl() && isEnabled()) {

turningValue = (angleSetpoint - gyro.getAngle())*pGain;
if(joystick.getY() <= 0)

{

//forwards

myRobot.drive(joystick.getY(), turningValue);

}else {

17

//backwards
myRobot.drive(joystick.getY(), -turningValue);

}

/**

* Runs during test mode.
*/

public void test(){

18

~Tankdrive.java code™
package org.usfirst.frc.team564.robot;

import edu.wpi.first.wpilibj.SampleRobot;
import edu.wpi.first.wpilibj.RobotDrive;
import edu.wpi.first.wpilibj.Joystick;
import edu.wpi.first.wpilibj.Timer;
/**
* This is a demo program showing the use of the RobotDrive class, specifically it
* contains the code necessary to operate a robot with tank drive.
*
* The VM is configured to automatically run this class, and to call the
* functions corresponding to each mode, as described in the SampleRobot
* documentation. If you change the name of this class or the package after
* creating this project, you must also update the manifest file in the resource
* directory.
* WARNING: While it may look like a good choice to use for your code if you're inexperienced,
* don't. Unless you know what you are doing, complex code will be much more difficult under
* this system. Use IterativeRobot or Command-Based instead if you're new.
public class Robot extends SampleRobot {
RobotDrive myRobot; // class that handles basic drive operations
Joystick leftStick; // set to ID 1 in DriverStation
Joystick rightStick; // set to ID 2 in DriverStation
public Robot() {
myRobot = new RobotDrive(0, 1);
myRobot.setExpiration(0.1);
leftStick = new Joystick(0);
rightStick = new Joystick(1);
}
/**
* Runs the motors with tank steering.
*/
public void operatorControl() {
myRobot.setSafetyEnabled(true);
while (isOperatorControl() && isEnabled()) {
myRobot.tankDrive(leftStick, rightStick);
Timer.delay(0.005); // wait for a motor update time

19

Robotics 2016

~

Field Drawings
And Point Values

21

<2421 0L
-

22

aa
I aa
UEL] 825
MEL(] B2

adol
[P
IME.
Bum
de] s jaye
ade] 518489 BIUM .2
ade] 58489 SIUM .2

ade] 538D BIUM .2
ade) sJayeg uaal 2
S3LON

23

J s

[fiquassy piatd 994 810z

1ft.9in.

6 ft.

4in.

24

High Goal

Low Goal

7ft. 1in.
To Carpet

1ft. 4in.

25

Table 1-1: Auto Point Values

Action Value

Seaching a defense 2
Crossing a defense 10
Soulder in a low tower goal 5
Soulder in a high tower goal 10

Table 1-2:Teleop Point Values

Action Value

_ _C_f_rossing g_ggfense 5
Boulder in a low tower goal 2
; Boulder in a high tower goal 5
Challenging the tower (per Robot) 5
Scaling the tower (per Bobol) 15

26

